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6

Twistors

6.1 The twistor equation and its solution space

At various places in Volume 1 we stressed the fact that the two-component
spinor calculus is a very specific calculus for studying the structure of
space—time manifolds. Indeed, the four-dimensionality and (+ — — —)
signature of space—time, together with the desirable global properties of
orientability, time-orientability, and existence of spin structure, may all,in a
sense, be regarded as derived from two-component spinors, rather than just
given. However, at this stage there is still only a limited sense in which these
properties can be so regarded, because the manifold of space—time points
itself has to be given beforehand, even though the nature of this manifold is
somewhat restricted by its having to admit the appropriate kind of spinor
structure. If we were to attempt to take totally seriously the philosophy that
all the space—time concepts are to be derived from more primitive spinorial
ones, then we would have to find some way in which the space—time points
themselves can be regarded as derived objects.

Spinor algebra by itself is not rich enough to achieve this, but a certain
extension of spinor algebra, namely twistor algebra, can indeed be taken as
more primitive than space-time itself. Moreover, it is possible to use
twistors to build up other physical concepts directly, without the need to
pass through the intermediary of space-time points. The programme of
twistor theory, in fact, is to reformulate the whole of basic physics in twistor
terms. The concepts of space-time points and curvature, of energy-—
momentum, angular momentum, quantization, the structure of elementary
particles with their various internal quantum numbers, wave functions,
space~-time fields (incorporating their possibly nonlinear interactions), can
all be formulated — with varying degrees of speculativeness, completeness,
and success — in a more or less direct way from primitive twistor concepts.

Twistor theory has, however, become rather mathematically elaborate.
To cover in any thorough and comprehensible way all the above-
mentioned aspects of the theory would in itself require a book considerably
larger than the present volume. (Some of these topics are to be covered in a
forthcoming book by Ward and Wells, 1986.) In any case, to appreciate
twistors fully and to be able to calculate with them, one must first study
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44 6. Twistors

spinor theory, somewhat along the lines that we have followed in Volume 1.
Thus we do not attempt to be in any way complete in our description of
twistor theory. The account given here will serve as an extended (perhaps
somewhat lop-sided) introduction to the subject. We shall develop in detail
mainly that part of twistor theory which relates to spinorial descriptions of
twistors, and indicate some of their profound connections with energy-
momentum/angular momentum and with massless fields. We do not enter
into much discussion of how twistors may be regarded as more primitive
than space-time points, nor do we discuss quantization at any length, or
particle theory, or give much detail of the treatment of nonlinear fields. In
this chapter, apart from giving a discussion of local twistors in general
curved space-time (local twistors in fact lying somewhat outside the main
development of twistor theory), we shall restrict our account of twistors
almost entirely to Minkowski space—time M, though many interrelations
with curved space—-time properties will be given. In §7.4 we indicate how
certain twistor ideas can be applied in general space—time .# (particularly
inrelation to a hypersurface # < .#),and in §9.5 we show how twistors can
be used in cosmological models, while in §9.9 we introduce the concept of 2-
surface twistors and show how our flat-space discussion of §§6.3—6.5 can be
adapted to a curved-space context and suggest a quasi-local (and asympto-
tic) definition of mass—-momentum-angular momentum surrounded by a 2-
surface (the asymptotic mass—-momentum agreeing with the standard
definition of Bondi-Sachs). However we have had to omit a good deal of the
detailed theory of general curved-space twistor theory. The twistorial
description of space—time curvature is one of the more elaborate and
sophisticated (and, indeed, remarkable — though incomplete) parts of
twistor theory and, regrettably, it must remain outside the scope of the
present work. (See Penrose 19764, 1979a, Hansen, Newman, Penrose and
Tod 1978, Tod 1980, Tod and Ward 1979, Ward 1978, Penrose and Ward
1980, Porter 1982, Hitchin 1979, Atiyah, Hitchin and Singer 1978, Wells
1982 for details.) There is much that is striking and illuminating even in the
application of twistor theory to the weak-field limit of general relativity, cf.
§86.4, 6.5. This will be of crucial significance also for the curved-space
discussion of §9.9. (See also Huggett and Tod 1985).

The twistor equation

Our point of departure is the equation (cf. (4.12.46), (5.6.38)*)
V(A“‘,wB) =0, (6.1.1)
* Equations, propositions, etc. of Volume 1 {i.e. in Chapters 1-5) which are referred to in

Volume 2 are all to be found in the preceding summary (except for a few parenthetic
references distinguished by the explicit mention of ‘Volume 1’ when cited).



6.1 The twistor equation and its solution space 45

called the twistor equation (Penrose 1967a; cf. also Garding 1945)*. We
begin by investigating its formal properties, leaving its physical and
geometrical significance to later sections. First, we easily prove it is
conformally invariant. Choosing

& = b, (6.1.2)
we get, from (5.6.15), (5.6.14)
B =V 0P +¢,5Y 05, (6.1.3)
whence
VYo® = Q™ VP, (6.1.4)

Thus, conformal invariance is established.
There is a severe consistency condition for (6.1.1) in curved space—time,
analogous to (5.8.2). For we have (c¢f. (4.9.2), (4.9.11), (4.6.35), (5.1.44))

VACYA WD = — (AP = — P4 80P — jep 40P, (6.1.5)

allowing for the presence of an electromagnetic field, and the possibility
that w?® has charge e. Thus (6.1.1) implies

Y pcp@w® = — ie@poc), (6.1.6)

which is the analogue of (5.8.2). If @” #0 and e = 0, we see, by reference
to Proposition (3.5.26), that w? is a four-fold principal spinor of ¥ 4pcp.
Thus, non-zero uncharged solutions of the twistor equation can exist only
at points where W 4p¢p is either zero or ‘null’ (i.e. possessing a four-fold
principal spinor). If e #0, the situation is no better. In view of these
difficulties our discussion of (6.1.1) in this chapter will be restricted to
conformally flat space—times (characterized by ¥ ,zcp =0; see §§6.8,9),
and most of our calculations will actually be done in Minkowski space M.
Their extension to conformally flat space then follows from conformal
invariance. (For extensions to arbitrary curved space: local twistors,
hypersurface twistors and 2-surface twistors, see §6.9, §7.4 and §9.9,
respectively.) Even in flat space, (6.1.6) has no solutions other than zero if
e #0and ¢, is somewhere non-vanishing. So we assume, from now on, that
unless the contrary is stated all fields are uncharged.

In Minkowski space, equation (6.1.1) indeed possesses non-trivial
solutions. We shall now find these explicitly. We choose an arbitrary origin
0 in M and label points by their position vectors x° relative to 0. We regard
x° as a vector field on M. At O it is zero, and everywhere it satisfies

Vxb=grt, 6.1.7)
* A version of this equation, written in terms of y-matrices, was found by Wess and

Zumino(1974)in connection with supersymmetry theory. See Appendix to this volume:
(B.94), (B.95).



46 6. Twistors

since in standard Minkowski coordintes, x* the components of x* at a
point, are the coordinates of that point. Now consider

VAVEWS, (6.1.8)

o® being a solution of (6.1.1). The expression is therefore skew in BC. But
since M is flat, we can commute the derivatives and then the expression is
seen to be skew in AC. It is therefore totally skew in ABC and so must
vanish. This tells us that V2.wC is constant. Since it is skew, it must therefore
be a constant multiple of £5€, say — inge® for some constant spinor ng.
(The factor —1 is inserted for later convenience.) So we have

VBA'('OC = - ieBan'. (6.1.9)

Integrating this equation gives w® = x34'(— i, n,.) + constant, as can be
seen by writing it in coordinate form, and so we find
=1~ ix“'i’z,}
. (6.1.10)
M=%,
where &* and # . are to be understood as follows: since w is a spinor field,
the RHS of (6.1.10) (1) must be regarded as a spinor field also. This can be
done by regarding &* and # . as constant spinor fields whose values coincide
with those of w* and n ., respectively, at the origin. A similar convention
should be understood whenever we write a point symbol over a spinor
kernel. (The symbol “” above = ,. is, of course, redundant here, but it makes

what follows more consistent.)

Twistor space

As in the case of all (complex) linear differential equations, the solutions of
the twistor equation constitute a vector space over the complex numbers,
with scalar multiplication and addition of solutions defined in the obvious
way. In the case of a general linear equation this vector space is often
infinite-dimensional. It is clear from (6.1.10), however, that the solutions w*
of the twistor equation are fully determined by the four complex
components at O of w* and n,. in a spin-frame at O. These solutions w*
therefore constitute a four-dimensional vector space T* over the complex
numbers called twistor space (and they thus have eight real degrees of
freedom). The elements of twistor space are called [§]-twistors, and we shall
usually denote them by sans-serif capital kernel symbols with small Greek
{four-dimensional) abstract indices, e.g., Z* If we denote the particular
solution w” of (6.1.1) by Z* we express this as follows:

Z* =[w"]. (6.1.11)
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Multiplication by a complex number and addition of twistors are defined in
the obvious way:

Mot =[lo*] (1eC), [0]+[E4]=[0+E] (6.1.12)

From these [§]-twistors we can build up twistors of arbitrary valence (71
according to the standard rules of constructing tensor systems such as given
in Chapter 2. ,

Thus we have abstract-index copies T4, T7,...,of T% and other spaces T,
T3,... It turns out, however, that higher-valence twistors cannot in general
be represented by single fields of spinors. In order to make the algebra of
higher-valence twistors more systematic and manageable in terms of their
spinor-field descriptions, it is much more convenient to use the pair of
spinor fields w4, n, to represent Z° rather than to use w* alone. When
concerned with such descriptions we shall, as an alternative to (6.1.11),
write*

2% = (0,1 ), (6.1.13)
where w* and n . are related by (6.1.9) (or, equivalently, by (6.1.10)). But,
unlike (6.1.11), the description (6.1.13) is not conformally invariant.
(However, see §6.9.)

Since knowing w is fully equivalent to knowing the constant spinors &4
and # . (cf. (6.1.9), (6.1.10)), we can also represent the field w* and hence Z*
by the values w*(0) and = 4(O) of the spinor fields w* and . at 0. We then
write

723 (*(0), 7.,.(0)), (6.1.14)

0 . .
the symbol < reminding us that the correspondence (6.1.14) is not
Poincaré-invariant, but depends on the choice of a particular space-time
origin 0. Occasionally we shall use the notation

ZA=0t, Z,=n,, (6.1.15)

where w4, 7. could be either spinor fields (description (6.1.13)) or point-
spinors at O (description (6.1.14)). They are, in either case, called the ‘spinor
parts’ of Z* (‘at O’). By (6.1.14) and (6.1.10) we have

)-((DA’ Tyg)= ('M’A, AT 40), (wA, T)+ (&4, Na)= (wA + &4, Tg+ 14
(6.1.16)

* Any temptation to identify the twistor (6.1.13) with a Dirac spinor (¢f. (5.10.15) and the
Appendix) should be resisted. Though there is a certain formal resemblance at one
point, the vital twistor dependence (6.1.10) on position has no place in the Dirac
formalism.
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One might choose to regard T* (non-Poincaré-invariantly) as the direct
sum S4[0] @ € ,.[0] of the spaces of spinors of type w* and =, at 0. (We
recall that S#[P] is the complex vector space of spinors of index type & at
the point P.) The index o of Z* would then be viewed as a kind of direct sum of
the abstract index A4 and the abstract index 4’ in reverse position. (Note that
this is quite different from the ‘clumping’ of §2.2.) In practice we can often
treat A and A’ as the two ‘values’ taken by «. When viewed in this way, « is
somewhat intermediate between being fully abstract and being numerical.
Note that the ‘components’(6.1.15) corresponding to these ‘values’ A and A’
of a get transformed when we change the origin (cf. (6.1.10)), so we prefer
not to adopt this view formally.

If we choose an arbitrary spin-frame (04,14) at O, we may construct a
twistor basis as follows:

55040)  8S040)
8350, —1,)  855(0,0,). (6.1.17)
The linear independence of these twistors is manifest. Now, since
(@*(0), 14(0)) = (@*(0)o* + (O}, m;(0)0 4 — Mo (O ), (6.1.18)
it is evident from (6.1.12), (6.1.16), and (6.1.17) that
2" =73%, (6.1.19)
with
= ((‘00(0)’ wl(O), TCO’(O)> nl'(o)), a= 0’ 19 2’ 3 (6'1'20)
From this and (6.1.15) we have the following explicit equations:
2°=w%0), Z'=w'0), Z*=r,(0)=2Z,, Z’=n(0)=1,.
(6.1.21)

So Z° and Z* can be consistently interpreted either as the 0, 1 components of
Z® or as the components of the spinor part Z4 at 0. We shall make the
convention that components of spinor parts of any twistor (unless
otherwise stated) are always to be evaluated at the origin.

Dual twistors

Since [ ]-twistor space is effectively the direct sum of the spaces of spinors
of type w* and = . at O, the dual, [?]-twistor space, must effectively be the
direct sum of spaces of spinors of type 4, u*" at 0. Typically, we may write

W, S (4,(0), 44(0)) 6.122)
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and the scalar product must then be defined as
W,Z% = 1,(0)w*(0) + p*'(0)n .(O). {6.1.23)
Analogously to (6.1.13) we wish to represent []-twistors by two spinor
fields 4, and u?', so that the dependence on the origin O is removed. We
write
W, = (A, 1Y), (6.1.24)
(6.1.22) giving the values at 0. We require (6.1.23) to hold not just at O, but
at every point of M:
Aqo + 'y = WZ% = 1,(0)0*(0) + p* (0)m 4(O)
=104+ iy, (6.1.25)
where, as before, 1, and i’ are constant spinors whose values at O are A ,(O)
and pu*'(0), respectively. Substituting (6.1.10) into this equation yields
A — xR )+ pt e = L0 + iRy,
And since this relation must hold for arbitrary constant &4, #,., the

‘coefficients’ of these spinors must be equal; this gives the following form for
the fields A ,, u*"

}'A = }'A’
pt =g il (6.1.26)

We can verify at once from (6.1.26) that the field u4 satisfies (and is, in
fact, the general solution of) the conjugate twistor equation

VB = 0, (6.1.27)
and that, analogously to (6.1.9), 1, can be obtained from u4 by
Vou® =ie, B, (6.1.28)

Thus, the 4, in (6.1.24) is redundant and W, is fully determined by u#". In
fact, we can, alternatively to (6.1.24), identify W, with u*’ (cf. (6.1.11)) and
write
W, =[u"], (6.1.29)

this being conformally invariant, like (6.1.11), though less convenient than
(6.1.24) for building up twistors of higher valences.

It is worth noting the form which the inner product W, Z* takes directly in
terms of the spinor fields w* and u*. We need only substitute from (6.1.9)
and (6.1.28) into (6.1.25) to find

(1] [0*]:= W,Z* = 3i (4" V. 0% — 0V (g ®). (6.1.30)
Each solution u* of (6.1.27) can be obtained by simply complex-
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conjugating a solution of (6.1.1): w* - u# = @*. This is evident from a
simple inspection of the two differential equations, or, alternatively, from an
inspection of their respective general solutions (6.1.10), (6.1.26). This
suggests that we identify the [$]-twistors W, with the complex conjugates
of the [4]-twistors Z* and vice versa. Consequently we define
2% =2,:=(7,0%),
W, = W= (4, 7,). (6.1.31)
Note that the choice of the arbitrary factor in (6.1.9) as — i enables us to pass
via complex conjugation from (6.1.9) to (6.1.28), and from (6.1.10) to (6.1.26).
The complex conjugation of an arbitrary twistor will be discussed presently.
Analogously to (6.1.15), we sometimes write
W,=1, W=7 (6.1.32)
(either as spinor fields or as point-spinors at O} for the spinor parts of W,.
We shall want to define a dual basis 3] to (6.1.17). It must satisfy
5% 05 = 63, (6.1.33)

and this is easily verified for
8H(=1,0)  815(040)
525(0,0%) 350, 1%) (6.1.34)

We then find that
W,=W,&, (6.1.35)
with
W, =(15(0), 1,(0), u*(0), u* (0)), «=0,1,2,3. (6.1.36)

Explicitly, from this and (6.1.32), we have
Wo=440), W;=4,(0), W,= pO)=W%, W,;=u"(0)= wt,

6.1.37)
(Compare the remarks after (6.1.21).)
Higher-valence twistors
Now consider the outer product X*°Z* of two twistors such as
XE=(E4n.), Z0= (0% my) (6.1.38)

represented at O by
o o
X2(E40),1,40)), Z*—(0*(0),1,4(0)). (6.1.39)
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Reference to (6.1.20) shows that its components X*Z? will consist of all the
components at O of the following four spinors:

AP, Etng, 0% nemp. (6.1.40)

The spinor fields (6.1.40) are the spinor parts of X°Z® and they have a
position dependence determined by (6.1.10) (as applied to (6.1.38)). The
general [2]-twistor S*#, being a sum of products of type X*Z*, will be fully
characterized by four independent spinors at O, namely the values at O of
the four fields

S48 S, S,5 Suip- (6.1.41)

These are said to constitute the spinor parts of S*£. They are of a very special
interrelated type, being sums of expressions as in (6.1.40), whose constitu-
ents (6.1.38) have the position dependence (6.1.10).

In using the notation (6.1.41) it is vital to keep the order of the spinor
indices unchanged, e.g., never to write S5 = S,/ (contrary to our usual
conventions, ¢f. (2.5.33), since this order is our only notational indication of
which spinor part is meant. But the notation may become confusing when
indices are raised and lowered with es. For this reason, if the spinor parts of
some twistor are to be used extensively it is often convenient to introduce
separate symbols for the various spinor parts. But for the general discussion
of twistors the present notation is very economical. We often write

S*F S,
7= ”) 6.1.42
<SA'B SA’B’) ( )
In the same way we find the typical patterns* of [{]- and [2]-twistors:
a EAB EABI RAB RAB'
; ﬂ—<EA'3 ESE) Ryp = R4, RAB |’ (6.1.43)

It is clear that the general [2]-twistor will have 277 spinor parts, which,

however, cannot be exhibited as conveniently as the above. For example, a

[%]-twistor T*, has eight independent spinor parts of the following form:
TABCa TA'BC’ TAB'C’ TABC)s TAB’C'7 TA'BC’: TA’B’C? TA’B'C"

(6.1.44)

The particular spinor part which has all its indices at the upper level (in the

* The use of staggered indices on twistors, such as for E%; and T, here, serves no ‘purely
twistorial” purpose, there being no ‘metric’ to raise or lower twistor indices, but it is
helpful for keeping track of the various spinor parts. Accordingly we shall tend to adopt
such staggering only when we are concerned with the taking of spinor parts.
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case above, T48¢) is called the primary spinor part of the twistor. That part
with all lower indices is called the projection part.

The definition (6.1.23) of W,Z* leads to definitions for contractions of
arbitrary twistors. In practice this amounts to contracting the ‘relevant’
spinor parts over 4 and A’ for each contracted twistor index «. For example,

Tdﬂa = (TABA + TA'BAl, TAB'A + TArBrA’). (6.1.45)
It is now easy to see how we can take components of general twistors
relative to the basis (6.1.17), analogously to (6.1.21) and (6.1.37). In the
general case, exemplified by
T, =T 53000}, (6.1.46)
we find (spinor field components being taken at 0, in accordance with our
remark after (6.1.21))

TOOO = TOOO, -I-O1 1 = TOI 1s CtC.,
T20 =T,0, T20,=T,0, T3,=T,.%etc, (6147

where the left member of each equation is the twistor component, and the
right member is a spinor-part component. Since twistor indices are not
primed and spinor indices are never 2 or 3, there is no ambiguity of meaning
in the second line of (6.1.47). In the first line, where there might be
ambiguity, there is in fact none. Indeed, we have the following rule:

O(up/down)«—O(up/down), 1(up/down)e l{up/down)
2(up/down)«>0'(down/up), 3(up/down)«— l'(down/up) (6.1.48)
We next examine the position dependence of the spinor parts (6.1.41)
of the [3]-twistor S*. The mutual and position dependences of the
(field-)spinor parts of 1-valent twistors determine the form of the
{field-)spinor parts of all twistors. For S*, these can be found from the
requirement that, for two arbitrary [9]-twistors U,, W, the (scalar) field
represented by
S¥U W, (6.1.49)
is constant and is therefore equal to its value at the origin. Proceeding
exactly as in (6.1.25), we easily find the desired relations. In order to exhibit
these conveniently we prefer to introduce a more specific notation for the
field-spinor parts of S*, namely

AB A
sw=<jﬂ £V>, (6.1.50)
A’ A'B

(although S4B, S4;., etc. would be perfectly legitimate). Then the relations
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between these are found to be as follows:

Kap =Kap>

B =18 —ixP¥%,p, (6.1.51)
A _ A AA'p

Pp =Pp — X" Kqp,

4B = GAB _jxAA'}B, _xBB 54y A (BB

The content of (6.1.51) can also be expressed in terms of the following
differential equations (cf. (6.1.9), (6.1.28)):

AB _ in ALB io B oA

Voo o = —iec?te — g0 pé,
A 1o A

VCC'pB' = — 18C KC'B" (61.52)
B _ o B

VCC'TA' = —1Ec K45

Veckas =0.

One way to establish these 1s to differentiate (6.1.51) at the origin, and then
to recall that the origin is arbitrary, so that (6.1.52) holds generally. In this
special case the twistor S* is still fully determined by a single field, namely
by its primary spinor part ¢#2. For (6.1.52)(1) yields

Voo = = 2itg —ipg,

Ve o€ = —itd - 2ipl., (6.1.53)
whence we get 8. and pZ.. And these, via (6.1.52)(2) or (3), yield k4.5

Relations analogous to (6.1.51) and (6.1.52) evidently hold for twistors of

any valence, and can be obtained in an analogous way. Let us consider one

more special case, namely the [}]-twistor E%; of (6.1.43) for whose field-
spinor parts we now again introduce a more specific notation:

OAB éAB' >
E*, = - (6.1.54)
g ('7,4'3 CA’B
For these fields we find
Nas=Nas
CA'B‘ = Z’A'R + ixBB"o?A'B,
04, =04, — x4 ,.p, (6.1.55)

EAB — EAB’ _ ixAA'L’A’B’ + ixBB'éAB 4+ XxA4 BB o
which (analogously to (6.1.51), (6.1.52)) are equivalent to
Vet =iec? 04c — iec*(c P,
Voo 845 = —iec™c g, (6.1.56)
Veel® = iec® e,

Veenas=0.
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We note that equations (6.1.55) remain valid if we subject 4. and {* to
the changes
A A A
0 g0+ dec”, (6.1.57)
LB o + Aec® (A =constant),

and so we see that in this case the primary spinor part &8 of E%; does not
uniquely determine E*;. The transformation (6.1.57) in fact changes the
trace

B, =04, + (" (6.1.58)

of the twistor:
E* —E*, + 44, (6.1.59)

Only if the trace is independently known (e.g., known to be zero), is E% in
fact determined by &£4%'.

Equations analogous to {(6.1.51), (6.1.55) hold for all twistors. For some,
such as for S$*, all the information of the twistor is contained in the primary
part. But the example of E*; shows that this need not be the case. A class of
twistors for which the primary part does carry all the information is that of
the trace-free symmetric twistors:

Ta.nép...t=T(a”.¢”(p...t)’ (6.1.60)
Tes s =0 (6.1.61)
The equation satisfied by the primary part T4--PR---T" = j4...DR"...T" jg
Vit ARy =0. (6.1.62)
At the other extreme, the alternating twistors ,4,5, £%, satisfying
Eapys = Eapyopy  EP =€, gy, =801 =1, (6.1.63)

each have only six non-zero spinor parts, out of a total of sixteen, namely
the parts with two unprimed and two primed indices. These are

AB = A e, = —eACeyp, etc., (6.1.64)

& p==¢& Ecps

for &,4,5, and
ea5 P =58P, £8P = —e,008%P, etc, (6.1.65)

for e#7%, In these cases the primary part vanishes. (It also vanishes in the case
of a skew twistor X** = X{#71) In fact, only the trace-free symmetric
twistors can be represented in this way by a single spinor field (namely by
their primary spinor part) subject to a single first-order differential
equation. In certain other cases (e.g., that of a skew [3]-twistor) this primary
spinor part does determine the twistor completely, but is not characterized
by a first-order differential equation. In most other cases the primary spinor
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part is insufficient to define the twistor. A symmetric twistor (6.1.60) which is
not trace-free also has a primary part which satisfies (6.1.62), but the various
trace parts, e.g., expressions of the form 6{&U%: 3, are not determined by the
primary part (i.e, such expressions can be added to T*~?, _ without
changing the primary part).

We shall be particularly interested in symmetric, skew-symmetric, and
Hermitian 2-valent twistors. The twistor S* of (6.1.50) is symmetric if
S =8k e, if

o8 =084 ph =18, Kyp =Kgy- (6.1.66)

It can be seen from (6.1.52) that the mere symmetry of 64 at all points forces
the second and third of equations (6.1.66), and is therefore sufficient for the
symmetry of S*. For a skew-symmetric twistor (S* = — S#%) we have a
minus sign on the right of all equations (6.1.66), and again the mere skew-
symmetry of 642 at all points forces the rest.
We say that the twistor E%; of (6.1.54) is Hermitian if
Ey =E%, (6.1.67)
Le., if
G =E =iy 0 =0 (6.1.68)
Analogously to the remark we made about symmetric spinors, it can now
be seen from (6.1.55) that the Hermiticity of &4% at all points forces the
second of equations (6.1.68), but permits the members of (6.1.68)(3) to differ
by an imaginary multiple of ez%. Consequently, however, it suffices to
ensure the Hermiticity of E%; if E*; is known to be trace-free.
An important observation is the following: the primary spinor part 642 of
any twistor S* automatically satisfies the differential equation

VEa1P =, (6.1.69)

as is clear from (6.1.52)(1). Also the primary spinor part £&4% of any twistor
E®; automatically satisfies the differential equation

VE e =0 (6.1.70)
(which is actually the conformal Killing equation, see §6.5 below), as follows

from (6.1.56)(1). Just as with (6.1.1), which is satisfied by the primary spinor
part of Z%, these two differential equations are conformally invariant, with

GAB = g8, EAB = pAB (6.1.71)

>

(as is implicit, in the case of conformally flat space, in their twistor origins).
This can be established independently of space—time flatness as for (6.1.1).
Furthermore, by an argument analogous to that leading to (6.1.10), it can be
shown that the general solutions in M of equations (6.1.69) and (6.1.70) are,
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with o8 symmetric, given by (6.1.51) (4), (6.1.55) (4), respectively. Note that
(6.1.69) and (6.1.70) are both special cases of (6.1.62), which is again
conformally invariant (cf. (5.6.15)), with

IA...CR’...T' — lA...CR’...T’. (6172)

Equations (6.1.69), (6.1.70) and (6.1.62) will be further discussed below (see
§6.7; also (6.4.1)). Arguments from §6.7 show that all symmetric solutions of
(6.1.62) are primary parts of trace-free symmetric twistors.

We now return to the question of defining complex conjugation of the
general twistor. The rule is, in fact, determined by the definitions
(6.1.31) for 1-valent twistors, together with the requirement that complex
conjugation commute with product and sum, e.g,,

VAW, + XY, = VW, + XY,

Consider, for example, the twistor
AW, ZAWF
P, = Z*°W, = B ).
! ’ (zmwg z,,IWB)
We must have

p_azlj =Pf=2WFf= ( (6.1.73)

ZW8 Z W,
ZAWE ZA'WB,)'
Since the general [ { ]-twistor is a sum of twistors of the type of P%;, and since
the most general [2]-twistor can be dealt with analogously, we recognize
the following general rule: To conjugate a twistor, we conjugate all its spinor
parts, and then place each conjugated part into the correct position, namely

that appropriate for a twistor with all original twistor indices at reverse level.

Conformal invariance of helicity and scalar product

We define the helicity of a twistor Z* by

5:=42Z, = {74 + 1o 0*) (6.1.74)
(likewise, for W, it is s = $W*W,), and this is evidently real, although it can
be positive or negative. We say Z* (or W,) is null if its helicity vanishes, right
handed if s > 0, and left handed if s < 0. Twistor space T*(= T = T% is thus
composed of three pieces T=N, T* and T, consisting of null, right-
handed and left-handed twistors, respectively. Similarly, dual twistor space
Te(=T*=T,) is composed of T,, T, and T _. For the projective versions
of these spaces, ie. the systems of one-dimensional linear subspaces
contained in them (together with the origin), the prefix P is adjoined (see
Fig. 6-1 and §9.3).
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Fig. 6-1. Projective twistor space PT® is the space of one-dimensional linear
subspaces of twistor space T®. It consists of three regions PT*, PT~ and
PT? (= PN®).

From (6.1.9) and (6.1.3) we see that, under conformal rescaling, the second
of the following equations holds; the first is simply (6.1.2) again:

d)A — (DA
fp=Tq +iY g0 0™ (6.1.75)

Thus 7, is not a conformally weighted spinor field. (Note the formal
similarity of the above equation with (6.1.10).) Equation (6.1.75) describes
the effects of changes of the conformal scaling in the given manifold M. The
twistor Z* itself is regarded as unaffected by this change. But its represent-
ation by spinor parts changes, unless we adopt an appropriate view of the
spinor 7 ... In fact, 7 .. can be regarded not as a conformally weighted spinor
field, but as something that behaves in the more complicated way (6.1.75)
under conformal rescaling of the metric. (Viewed in this way, .. cannot be
considered independently of w4) With this interpretation, it is still
legitimate to write Z* = (&4, #,.). This viewpoint is the one we shall adopt
when we consider local twistors in §6.9.
The analogue of (6.1.75) for the spinor parts of a [9]-twistor W, is

Ay = Ag =iV 0p?,
o=t (6.1.76)

(cf.(6.1.26)). We can now immediately verify the conformal invariance of the
twistor inner product (6.1.23) and hence of the helicity given by (6.1.74).
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IA@A + 04 = Ay — 1Y )0 + p* (e + 1Y, 0%
=0+ ptn . = W,Z% (6.1.77)

Thus the twistor inner product is purely a property of twistor space and is
independent of any particular point in space-time or choice of conformal
scale.

6.2 Some geometrical aspects of twistor algebra

The geometrical meaning of twistors is clearest in the case of null [§]-
twistors:
2°Z,=0. (6.2.1)
Suppose we have a particular null twistor Z* = (w4, 7 ,.) with 7z, # 0. Let us
first determine the locus Z of points in M at which w* = 0: the geometry of
the field w is best described in terms of this locus. On Z the position vector
must satisfy (c¢f. (6.1.10))
ixA17 = o4 (6.2.2)

We shall wish to assume that w* and 74 are not proportional at 0. If by
chance they are, we use the freedom we had in solving (6.1.9) for (6.1.10), and
choose a different point as origin, where w* and 74 are not proportional.
(This is always possible, since, by (6.1.10), 7, 0* =7 ,d* — x4 7 m,.;
so if 7, =0 we need merely go to a point at which x#4'% 7, #0 to
achieve 7 ;w4 5 0.) Assume this done. Then a particular solution of (6.2.2) is
given by

x* = (0¥ ng)  Lddot. (6.2.3)

This vector is real, since the parenthesis is real, by (6.2.1) and (6.1.74). The
remaining solutions of (6.2.2) must be such that their differences from (6.2.3)
annihilate 7 .. So since x* is real, these differences must be real multiples of
74n?'. Consequently the general solution of (6.2.2) has the form

x* = (i0%ng) " 14D + h7dn?, heR. (6.2.4)

This describes a null straight line Z, hereafter called a ray, in the direction of
the flagpole of 74; it passes through a point Q, given by h = 0in (6.2.4) whose
displacement from O is along the flagpole of @* so Q lies on the light cone of
O (see Fig. 6-2).

Note that the ray Z is independent of the scaling of Z*% if we replace Z* by
AZ* (A #0) then Z is unchanged. Conversely we easily see that the ray Z
determines Z* up to proportionality, since (6.2.2) is homogeneous in &4, ..
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Fig. 6-2. The ray Z, determined by a null twistor Z% points in the direction of the
flagpole of 74 and passes through a point Q whose displacement from the origin O is
in the direction of the flagpole of &*. At a general point P, the flagpole of w* lies in a
ray meeting Z.

If 7., = O there is no finite locus Z (cf. (6.2.2)). Instead (provided " does
not also vanish, in which case w* =0 and so Z* = 0) one can then interpret
the locus Z as a generator of the ‘light cone at infinity’. This will be discussed

in Chapter 9.

Flagpole field of w*: Robinson congruence

Having found the locus Z, it is easy to describe the general geometric
pattern of the flagpoles of the field ™. Recalling the freedom we have in the
choice of origin O, we see that a construction similar to the above can be
carried out at any point P at which w* is not proportional to 74. Where it is
proportional, the flagpole of w* is in a direction parallel to Z. For a general
point P however, the flagpole direction of w” will lie along the (unique) ray
joining P to the point at which Z cuts its light cone. Thus the field of flagpole
directions of w* consists simply of all the null directions in all the light cones
whose vertices lie on Z, together with those in the limiting light cone where
the vertex goes to infinity on Z — the (unique) null hyperplane containing Z.
This hyperplane is the locus of points at which the flagpole direction of w* is
parallel to Z (w* proportional to 7).

If Z* = (w*, m,.) is not null, it is still possible to regard it as representing a
locus in ‘complexified’ space—time. This viewpoint will be pursued in §9.3.
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However, a realization of Z* in real terms can also be given. It turns out that
the flagpole directions of w* still lie in a congruence of real rays. The rays
twist about one another (without shear) in a right-handed or left-handed
sense according as Z*Z, is positive or negative. (The shear-free — and
geodetic, i.e., straight-line — property of the congruence is a consequence of
the equation w“w®?V , .wpz =0 which follows from (6.1.9); see §7.1.) Con-
gruences arising from twistors in this way are called Robinson congruences
(cf Penrose 1967a). Knowledge of the Robinson congruence associated with
a twistor fixes the twistor up to a scalar multiplier.

There is another way in which the Robinson congruence associated with
a twistor Z arises. Consider the particular ray X through O in the flagpole
direction of w#(0). This can be represented by a twistor

X=5(0,3,4(0))
or by any non-zero multiple of this. Evidently X*2, =0, which condition
characterizes, at O, the flagpole direction of w*. But the origin is arbitrary,
so at any point the flagpole direction of w* is the direction of a ray X
through that point described by a twistor X* subject to

XZ,=0=XX, (6.2.5)
X?* being, of course, necessarily null. Thus the flagpoles of the w-field all
point along the rays given by (6.2.5) (for fixed Z,), whence (6.2.5) describes

the Robinson congruence.
To get a picture of a Robinson congruence we choose a particular Z* =
(0", ) with Z°Z, = 25, given in the standard coordinate system and spin-

frame, c¢f. (3.1.31) (and Chapter 1), by
22 =(0,5,0,1) (seR). (6.2.6)

The equation of the w-field is given (cf. (6.1.10}) by

i [t i 0

(@°,0%) = (0,5) —L< e x4y )( ) 6.2.7)
ﬁ x—iy t—z 1

%! =x+iy:t—z+is\/§‘ 6.2.8)

We can find a differential equation for the rays of the congruence, the

tangent direction defined by d¢:dx:dy:dz being that of the flagpole of w4, i.e.

dt +dz:dx +idy =dx —idy:dt — dz
=00V 6.2.9)

=x—iy:‘t—z—is\/§.

The general solution of these equations can be written down directly. But it

SO



